Module 4

Consider the function \(f:\mathbb{R}\to\mathbb{R}\) defined by

\(f(x) = \begin{cases} \frac{x^2-9}{x-3} &\text{if } x \ne 3, \ 9 &\text{if } x = 3. \end{cases}\)

Notice that:

\(\text{Im}(f|(1,5)) = f’’ (1,5) = (4,8) \cup {9}\) \(↪\) interval (open) about 3: \((1,5) = (3-2, 3+2)\)

Notice that we can “remove” 9 from the image, by excluding 3 from the set we are finding the image of:

\(\text{Im}(f|(1,5)\setminus{3})) = f’’(1,5)\setminus{3}) = (4,8)\setminus{6}\)

“Punctured” open interval about 3.

Notice that \((4,8)\setminus{6} \subseteq (4,8)\) and \((4,8)\) is an interval that contains 6, the value that we would like to be the limit as \(x\to3\).

\(l=4\)

\[ \begin{aligned} \mathrm{I}: & (2,6) (e=2) \\ & (3,5) (e=1) \\ & (3.9, 4.1) (e=0.1) \\ \mathrm{I}: & (2,4) \backslash\{3\} (d=1) \\ & (1,5) \backslash\{3\} (d=2) \end{aligned} \]

I’m going to describe a “game” for a number L.

In this game, there are two Players: I & II, and Player I always goes first.

I plays an open interval about L, i.e., an interval of the form \((L-e, L+e)\) for some positive (real) number \(e\).

II plays a “punctured” open interval about 3, i.e., an interval of the form \((3-d, 3+d)\setminus{3}\) for some positive (real) number \(d\).

Player II wins the game if \(f’’(3-d, 3+d) \setminus{3}) \subseteq (L-e, L+e)\)

Example Game #1: (\(L = 9\)) Player I gives/plays \((9-4, 9+4) = (5, 13)\)

Player II Attempts: \(f’’((1, 5)\setminus{3}) = (4, 8)\setminus{6} \nsubseteq (5, 13) (d=2)\) \(f’’((2, 4)\setminus{3}) = (5, 7)\setminus{6} \subseteq (5, 13) (d=1)\)

Player II can play to win!

(If Player II uses any \(e \in (0, 1)\), they’ll win)

Example Game #2: (\(L=9\)) Player I gives/plays \((9-1, 9+1) = (8,10)\)\ Player II Attempts : \(f’’((1,5)\backslash{3}) = (4,0) \backslash{6} \not\subset (8,10)\) (\(d=2\))\ \(f’’((2,4)\backslash{3}) = (5,7)\backslash{6} \not\subset (8,10)\) (\(d=1\))

Notice that as Player II decreases \(e\), the image will stay disjoint from \((8, 10)\), so the image will never be a subset. As \(e\) increases, the image will still have values that are not in \((8,10)\).\ Player II can’t play to win.

Example Game #3: (\(L=6\)) Player I gives/plays \((6-1, 6+1) = (5,7)\)\ Player II can play \((2,4)\backslash{3}\) to win:\ \(f’’((2,4)\backslash{3}) = (5,7)\backslash{6} \subseteq (5,7)\)

Example Game #4: (\(L=6\)) Player I gives/plays \((6-0.01, 6+0.01) = (5.99, 6.01)\)\ Player II can play \((2.99, 3.01) \backslash {3}\) to win:\ \(f’’((2.99, 3.01)\backslash{3}) = (5.99, 6.01) \backslash{6} \subseteq (5.99, 6.01)\)

Notice that in the games where L=9, Player I could play to win (in Game #2), by making e small enough. However, when L=6, no matter how small Player I made e, Player II could make d small enough to still win. It turns out that for any other value of L (other than 6) Player I can win (This will actually give us lead us to a definition of the limit.)

“No matter what I chooses for \(e\), II can find a d such that \(f”((3-d, 3+d){3}) \subseteq (6-e, 6+e)"\)

Determines who “wins” the game

Let \(\varphi_{\lim} (f, 3, 6)\) be the formula/predicate:

“For every positive value of \(\epsilon\), there exists a positive value of \(\delta\) such that \(f’’( (3-\delta, 3+\delta) \setminus {3} ) \subseteq (6-\epsilon, 6+\epsilon)\). "

We can more formally write this as follows: (Using \(\epsilon\) (epsilon) for \(\epsilon\) and \(\delta\) (delta) for \(\delta\))

\((\forall \epsilon > 0) (\exists \delta > 0) (f’’( (3-\delta, 3+\delta) \setminus {3} ) \subseteq (6-\epsilon, 6+\epsilon)) (\varphi_{\lim}(f,3,6))\)

Notation: \((\forall \epsilon > 0)\) is shorthand for \((\forall \epsilon \in (0, \infty))\)

\((\exists \delta > 0)\) is shorthand for \((\exists \delta \in (0, \infty))\)

Generalization:

\((\forall \epsilon > 0) (\exists \delta > 0) (f’’(a-\delta, a+\delta) {a} ) \subseteq (L-\epsilon, L+\epsilon)) (\varphi_{\lim}(f, a, L))\)

\[ \begin{aligned} & A \subseteq B \rightarrow (\forall x) (x \in A \Rightarrow x \in B) \\ & x \in f''A \\ & \Downarrow \\ & f(x) \in A \\ & x \in f''(A) \\ \end{aligned} \] \[ \begin{aligned} & (\forall x) (x \in f''( (a-\delta, a+\delta) \setminus \{a\}) ) \Rightarrow y \in (L-E, L+E) \\ & (\forall y) (f(y) \in (a-\delta, a+\delta) \Rightarrow y \in (L-E, L+E) \\ & x \in Dom (f) \end{aligned} \] \[ \begin{aligned} & x \notin Dom(f) \rightarrow \text{false and so } \Rightarrow \text{true} \checkmark \\ & x \in Dom(f) \rightarrow \text{imp sam.} \end{aligned} \] \[ \begin{aligned} A \subseteq B &\text{iff } (\forall \alpha) (\alpha \in A \Rightarrow \alpha \in B)\\ &[(\forall \alpha \in A) (\alpha \in A \Rightarrow \alpha \in B)]\\ (\forall \alpha) (\alpha \in f"((a-\delta, a+\delta) \setminus\{a\}) \rightarrow& \alpha \in (l-\epsilon, l+\epsilon))\\ \epsilon f"\dots\\ \alpha \in f"((a-\delta, a+\delta) \setminus \{a\})\\ &\text{iff } \underbrace{f(x)}_{\text{A278}} = f(x) \text{ for some } x \in dom(f)\\ &\text{iff } \\ &\alpha \in f"x" \text{iff }\\ &(\forall x \in dom(f)) (x \in (a-\delta, a+\delta) \setminus \{a\}) \Rightarrow f(x) \in (l-\epsilon, l+\epsilon)\\ &|x-a| < \delta \Rightarrow |f(x)-l| < \epsilon \end{aligned} \] \[ \begin{aligned} & \sqrt{3^2+5} \le x-5 \le \sqrt{3^2+5} \\ & \sqrt{3^2+5} > |x-5| \le 0 \text{free}\\ & 3 > x^2+2 \le 0 \\ & 3 > x^2 \ge 0 \\ & 3 > \sqrt{x^2} \text{since} \\ & 3 = \sqrt{9} \\ & x \in (5-3,5+3) \\ & x \in (5-3, 5+8) \backslash \{5\} \\ & (3-3,3-3) \cup \\ &f(x) = (x-5)^2 \\ & \end{aligned} \]

\(\exists x \in (a-\delta, a+\delta) \backslash {a} \implies f(x) \notin (L-\epsilon, L+\epsilon) \)

\(\downarrow\)

\(\forall \epsilon > 0 \ \ \exists \delta > 0 \ \ \ ( \delta \le \epsilon ) \implies (0<3A)\)

\[ \begin{aligned} & \text{Open} \\ f(x) &= 4x - 2 \\ \lim_{x \to 3} f &= 10 \text{Play game} \\ & (3+0^+ (f(x) \Rightarrow (10 - \epsilon, 10 + \epsilon) \end{aligned} \]

Notice that in the games when L=9, Player I could play to win (in Game #2), by making e small enough. However, when L=6, no matter how small Player I made e, Player II could make d small enough to still win. It turns out that for any other value of L (other than 6) Player I can win. (This will actually give us/lead us to a definition of the limit.)

“No matter what I chooses for e, Player II can find a d such that "

\(f”((3-d, 3+d) \backslash {3}) \subseteq (6-e, 6+e)”\)

Determines who “wins” the game

I am sorry, but I am unable to produce accurate text as the content appears to be too faint or unclear.

Let \(\varphi_{\lim}(f, 3, 6)\) be the formula/predicate:

“For every positive value of \(\epsilon\), there exists a positive value of \(\delta\), such that \(f’’( {3-\delta, 3+\delta } ) \subseteq (6-\epsilon, 6+\epsilon)\).”

We can more formally write this as follows: (Using \(\epsilon\) (epsilon) for \(\epsilon\) and \(\delta\) (delta) for \(\delta\))

\[ (\forall \epsilon>0) (\exists \delta>0) (f''( \{3-\delta, 3+\delta \}) \subseteq (6-\epsilon, 6+\epsilon)) (\varphi_{\lim} (f, 3, 6)) \]

Notation: \((\forall \epsilon > 0)\) is shorthand for \((\forall \epsilon \in (0, \infty))\)

\((\exists \delta > 0)\) is shorthand for \((\exists \delta \in (0, \infty))\)

Generalization:

\[ (\forall \epsilon > 0) (\exists \delta > 0) (f''( \{a-\delta, a+\delta \}) \subseteq (L-\epsilon, L+\epsilon)) (\varphi_{\lim} (f, a, L)) \] \[ \begin{aligned} &\text { In our "Limit Games", Player I plays an interval around a value "L", then } \\ &\text { Player II plays a punctured interval around a value "a". } \\ &\text { Player II wins if whenever we take x from II's punctured interval, f(x) stays } \\ &\text { in Player I's interval. } \\ &\text { More symbolically, Player II wins if: } \\ &\left(\forall \epsilon>0\right)\left(\exists \delta>0\right)\left(\forall x \in \operatorname{Dom}(f) \backslash\{a\}\right)(x \in(a-\delta, a+\delta) \Rightarrow f(x) \in(L-\epsilon, L+\epsilon)) \\ &\uparrow \\ &\text { removes } \\ &x=a \text { from } \\ &\text { consideration } \\ &(\text { Punctures "II's interval) } \\ &\text { II's interval } \text { I's interval } \\ &\text { We say that } \lim _{x \rightarrow a} f(x)=L \text { exactly when II can always play to win no } \\ &\text { matter what player I plays: } \\ &\lim _{x \rightarrow a} f(x)=L \text { iff } \\ &\left(\forall \epsilon>0\right)\left(\exists \delta>0\right)\left(\forall x \in \operatorname{Dom}(f) \backslash\{a\}\right)(x \in(a-\delta, a+\delta) \Rightarrow f(x) \in(L-\epsilon, L+\epsilon)) \\ &\lim (f, a, L) \end{aligned} \]

Playing the Game Algebraically \ Let \(f(x) = (x-5)^2\). We claim \(\lim_{x \to 5} (f, 5, 0)\), i.e., that \(\lim_{x \to 5} f(x) = 0\). (\(f: \mathbb{R} \to \mathbb{R}\))

If this is in fact the case, Player II can always play to win.

Let’s say I plays \(\epsilon = 2\). Player II needs to find/play a value \(\delta\) such that whenever \(x \in (5-\delta, 5+\delta) \setminus {5}\) we have \(f(x) \in (0-2, 0+2)\).

We work backwards from what we want:

\(f(x) \in (-2, 2)\)

\(-2 < f(x) < 2\)

\(-2 < (x-5)^2 < 2\)

Any real squared is greater than or equal to zero. \(0 \le (x-5)^2 < 2\)

As \((x-5)^2 \ge 0\), the square root is defined. \( 0 \le |x-5| < \sqrt{2} \) If \(|A| < B\), then \(-B < A < B\). Also: \(\sqrt{A^2} = |A|\).

\(-\sqrt{2} < x - 5 < \sqrt{2}\)

\(5 - \sqrt{2} < x < 5 + \sqrt{2}\)

\(x \in (5 - \sqrt{2}, 5 + \sqrt{2})\)

This suggests that we can let \(\delta = \sqrt{2}\) (or any smaller value.)

\[ \begin{aligned} \sqrt{x^2} &= |x| \\ 0 &\le |A| < 17 \\ |A| &< 17 \\ -17 &< A < 17 \end{aligned} \] \[ \begin{aligned} \delta &> |a - x| \\ -\delta &< x - a < \delta \\ a - \delta &< x < a + \delta \end{aligned} \]

Generalizing: (Still consider \(f(x)=(x-5)^2\), \(a=5\), \(L=0\))

We know I will play some \(\epsilon > 0\), with this information, let’s see if we can determin II’s play (\(\delta > 0\)) based off of what value I chooses for \(\epsilon\).

Again, we’ll work backwards from what we want:

\[ \begin{aligned} f(x) &\in (-\epsilon, 0 + \epsilon) \\ f(x) &\in (-\epsilon, \epsilon) \\ -\epsilon &< f(x) < \epsilon \\ -\epsilon &< (x-5)^2 < \epsilon \\ 0 &\leq (x-5)^2 < \epsilon \\ 0 &\leq |x-5| < \sqrt{\epsilon} \\ -\sqrt{\epsilon} &< x-5 < \sqrt{\epsilon} \\ 5-\sqrt{\epsilon} &< x < 5 + \sqrt{\epsilon} \end{aligned} \]

Player II needs to use \(\delta = \sqrt{\epsilon}\) (or a smaller value) to win.

Comment: \(x \in (a-\delta, a+\delta)\) is equivalent to \(|x-a| < \delta\), and

\(f(x) \in (L-\epsilon, L+\epsilon)\) is equivalent to \(|f(x)-L| < \epsilon\), so we can write \(\lim(f, a, L)\) by:

\((\forall \epsilon > 0)(\exists \delta > 0) (\forall x \in \text{Dom}(f) \setminus {a})( |x-a| < \delta \implies |f(x) - L| < \epsilon)\)

Now, consider

\[ f(x) = \begin{cases} (x-5)^2 & \text{if } x \notin \mathbb{Z}, \\ 6 & \text{if } x \in \mathbb{Z}. \end{cases} (f: \mathbb{R} \rightarrow \mathbb{R}) \]

We will again claim \(\lim (f, 5, 0)\).

We again will try to find II’s move \(\delta\) for given moves \(\epsilon > 0\) that Player I makes.

Player I Plays \(\epsilon = \frac{1}{2}\): Need: \(|f(x) - 0| < \frac{1}{2}\) (i.e., \(f(x) \in (0 - \frac{1}{2}, 0 + \frac{1}{2})\))

\[ -\frac{1}{2} < f(x) < \frac{1}{2} \]

For the “replacement”, we know we are excluding 5, but we’ll also want to make \(\delta\) small enough not to include 4 nor 6, as we only want to consider \(f(x)\) near \(x=5\), so that we only use \((x-5)^2\).

This means we’ll need \(\delta \le 1\).

With this restriction:

\[ \begin{aligned} -\frac{1}{2} &< (x-5)^2 < \frac{1}{2} \\ 0 &\le (x-5)^2 < \frac{1}{2} \\ 0 &\le |x-5| < \sqrt{\frac{1}{2}} \longrightarrow \text{we'll need } \delta = \sqrt{\frac{1}{2}} \text{ (or less).} \end{aligned} \]

(\(\sqrt{\frac{1}{2}} < 1\), so this is fine!)

\[ \begin{aligned} & \text{Player I Plays } \mathcal{E} = 4: \text{ Need } |f(x)-0| < 4 \\ & -4 < f(x) < 4 \\ & \text{Again, we'll need to require } \delta \leq 1 \text{ so that we only are using } (x-5)^2 \\ & \text{(which is what } f(x) \text{ is equal to "close" to } a=5\text{).} \\ & -4 < (x-5)^2 < 4 \\ & 0 \leq (x-5)^2 < 4 \\ & 0 \leq |x-5| < 2 \implies \text{This tells us that we need } \delta \leq 2 \\ & \text{As we need } \delta \leq 1 \text{ and } \delta \leq 2, \text{ we take the minimum, and we let } \\ & \delta = 1 \text{ (or smaller)}. \\ & \text{Generalizing:} \text{ Need } |f(x) - 0| < \mathcal{E} \\ & -\mathcal{E} < f(x) < \mathcal{E} \\ & \text{When } \delta \leq 1, \text{ we will have } f(x) = (x-5)^2 \\ & -\mathcal{E} < (x-5)^2 < \mathcal{E} \\ & 0 \leq (x-5)^2 < \mathcal{E} \\ & 0 \leq |x-5| < \sqrt{\mathcal{E}} \implies \delta \leq \sqrt{\mathcal{E}} \\ & \text{As } \delta \leq 1 \text{ and } \delta \leq \sqrt{\mathcal{E}}, \text{ we let } \delta = \min(1, \sqrt{\mathcal{E}}) \text{ (or smaller)} \end{aligned} \]
  • Proof Outline:
  • Proof:
  • Introduce the function \(f\) (Domain, Codomain, “rule”).
  • Let \(\epsilon > 0\) be arbitrary.
  • Let \(\delta = \dots\) (found in scratch work) \(\implies\) Work backwards from \(|f(x) - L| < \epsilon\), to get \(|x-a| < \delta\). \(\delta\) can be based on/depend on \(\epsilon\).
  • Show/State \(\delta > 0\) (and is real). May need to set \(\delta\) equal to a minimum of multiple values.
  • Let \(x \in \text{Dom}(f) \setminus {a}\) be arbitrary.
  • Assume/Suppose \(|x-a| < \delta\).
  • Show \(|f(x) - L| < \epsilon\). \(\implies\) This will generally be the scratch work in reverse, or very similar with explanations added.
  • “Hence, if \(|x-a| < \delta\), then \(|f(x) - L| < \epsilon\).”
  • “As \(x\) was arbitrary, for all \(x \in \text{Dom}(f) \setminus {a}\), if \(|x-a| < \delta\), then \(|f(x) - L| < \epsilon\).”
  • “As \(\delta > 0\), there exists a \(\delta > 0\) such that for all \(x \in \text{Dom}(f) \setminus {a}\), if \(|x-a| < \delta\), then \(|f(x) - L| < \epsilon\).”
  • “As \(\epsilon > 0\) was arbitrary, for all \(\epsilon > 0\), then exists a \(\delta > 0\) such that for all \(x \in \text{Dom}(f) \setminus {a}\), if \(|x-a| < \delta\), then \(|f(x) - L| < \epsilon\).”
  • “Therefore, \(\lim_{x \to a} f(x) = L\).”
  • QED/End Proof Symbol.

For \(f: \mathbb{R} \rightarrow \mathbb{R}\), defined by \(f(x) = (x-5)^2\), we will prove \(\lim_{x \to 5} f(x) = 0\).

Proof: Let \(f: \mathbb{R} \rightarrow \mathbb{R}\) be the function defined by \(f(x) = (x-5)^2\) for all \(x \in \mathbb{R}\). Let \(\varepsilon > 0\) be arbitrary. Let \(\delta = \sqrt{\varepsilon}\). As \(\varepsilon > 0\), we have that \(\delta > 0\). Now, let \(x \in \mathbb{R} \setminus {5}\) be arbitrary. Suppose \(|x - 5| < \delta\). Now:

\[ 0 \leq |x - 5| < \sqrt{\varepsilon} \] \[ 0 \leq (x-5)^2 < \varepsilon. \]

As \((x - 5)^2 \geq 0\), \(|(x - 5)^2| = (x - 5)^2\), so we have:

\[ |(x - 5)^2| < \varepsilon \] \[ |(x-5)^2 - 0| < \varepsilon \] \[ |f(x) - 0| < \varepsilon. \]

Hence, \(|f(x) - 0| < \varepsilon\). Thus, if \(|x - 5| < \delta\), then \(|f(x) - 0| < \varepsilon\). As \(x\) was arbitrary, for all \(x \in \mathbb{R} \setminus {5}\), if \(|x - 5| < \delta\), then \(|f(x) - 0| < \varepsilon\). As \(\delta > 0\), then exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {5}\), if \(|x - 5| < \delta\), then \(|f(x) - 0| < \varepsilon\). As \(\varepsilon > 0\) was arbitrary, for all \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {5}\), if \(|x - 5| < \delta\), then \(|f(x) - 0| < \varepsilon\). Therefore, \(\lim_{x \to 5} f(x) = 0\).

Recall that \(Y_{\text{lim}}(f, a, L)\) is the predicate:

\((\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \text{Dom}(f)\backslash{a})(|x - a| < \delta \implies |f(x) - L| < \epsilon)\)

We write \(\lim_{x \to a} f(x) = L\) exactly when \(Y_{\text{lim}}(f, a, L)\) is true.

Warm Up: We will prove that \(\lim_{x \to 1} (2x + 7) = 9\). (\(f(x) = 2x + 7\), \(f: \mathbb{R} \to \mathbb{R}\))

“Scratch Work”: \(|f(x) - 9| < \epsilon\) (work backwards)

\(|(2x + 7) - 9| < \epsilon\)

\(|2x - 2| < \epsilon\)

\(2|x - 1| < \epsilon\)

\(|x - 1| < \epsilon/2\) (We set \(\delta = \epsilon/2\))

We can now write the proof.

Proof: Let \(f: \mathbb{R} \to \mathbb{R}\) be the function defined by \(f(x) = 2x + 7\) for all real values of \(x\).

Let \(\epsilon > 0\) be arbitrary. Now, let \(\delta = \epsilon/2\). Notice that as \(\epsilon > 0\), we have \(\delta > 0\).

Now, let \(x \in \mathbb{R} \backslash {1}\) be arbitrary, and suppose \(|x - 1| < \delta\). Now:

\(|x - 1| < \epsilon/2\)

\(2|x - 1| < \epsilon\)

\(|2x - 2| < \epsilon\)

\(|(2x + 7) - 9| < \epsilon\)

\(|f(x) - 9| < \epsilon\).

Hence, we have \(|f(x) - 9| < \epsilon\). Therefore, if \(|x-1| < \delta\), then \(|f(x) - 9| < \epsilon\). As x was arbitrary, for all \(x \in \mathbb{R} \setminus {1}\), if \(|x-1| < \delta\), then \(|f(x) - 9| < \epsilon\). As \(\delta > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {1}\), if \(|x-1| < \delta\), then \(|f(x) - 9| < \epsilon\). As \(\epsilon > 0\) was arbitrary, for all \(\epsilon > 0\), then exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {1}\) if \(|x-1| < \delta\), then \(|f(x) - 9| < \epsilon\). Hence, we have \(\lim_{x \to 1} f(x) = 9\).

Now, consider \(f : \mathbb{R} \to \mathbb{R}\) defined by

\[ f(x) = \begin{cases} 2x+7 & \text{if } x \neq 1, \\ 23 & \text{if } x = 1. \end{cases} \]

Here, we still have that \(\lim_{x \to 1} f(x) = 9\), and the proof is almost identical:

  • When we introduce the function at the start, we would introduce this function instead.

  • In the “calculation” portion, after we have \(|(2x+7) - 9| < \epsilon\), we would note that as \(x \neq 1\), \(f(x) = 2x+7\), so that we can write \(|f(x) - 9| < \epsilon\). (Recall \(x \in \mathbb{R} \setminus {1}\) was arbitrary, so \(x \neq 1\))

Now, consider \(F:\mathbb{R}\rightarrow \mathbb{R}\) defined by \(x \mapsto \begin{cases} (x-5)^2 & \text{if } x \notin \mathbb{Z}, \ 9 & \text{if } x \in \mathbb{Z}. \end{cases}\)

We will show/prove \(\varphi_{lim} (F, 5, 0)\), i.e., \(\lim_{x\to 5} f(x) = 0\).

Logical Form: \((\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in Dom(f)\setminus{5}) (|x-5| < \delta \implies |f(x) - 0| < \epsilon)\)

Previously: If we just had \(f(x) = (x-5)^2\), we needed to set \(\delta = \sqrt{\epsilon}\). This won’t quite work for us here.

Recall the “game”: If Player I plays \(\epsilon = 4\), Player II will need to find a value of \(\delta\) that will keep the function values in \((0-4, 0+4)\), i.e., between -4 and 4.

If II plays \(\sqrt{\epsilon} = \sqrt{4} = 2\), we are keeping \(x\) between \(5-2=3\) and \(5+2 = 7\), i.e., in the interval: \((3,7) \setminus {5}\).

This will be fine for any \(x\) that is not an integer, however, notice that if \(x=4\) or \(x=6\), we have \(f(x) = 9\), which is not in \((-4, 4)\).

(So Player II would lose)

Instead, Player II needs to make \(\delta\) small enough to avoid these values.

As long as Player I keeps \(\delta \leq 1\), there will be no other integers in \((5-\delta, 5+\delta) \setminus {5}\) so the case when \(x \in \mathbb{Z}\) won’t come up, and we just will have \(f(x) = (x-5)^2\).

% The image contains a hand-drawn x-y coordinate plane.

% * The x-axis is labeled with values, including 1 and 6. % * The y-axis is labeled with values, including 2, 3, 4, and 5. % * A curved line (approximately a parabola) is drawn on the graph. % * There are annotations near the y-axis, appearing to say:

% * z = 5-2 % * h = 4 % * t = 3

I can represent the annotated equations:

\(z = 5 - 2\) \(h = 4\) \(t = 3\)

\[ \begin{aligned} \min(1, 3, 2, 17) &= 1 \\ \min(1, 3, 2, 17) &\leq 1 \\ \min(1, 3, 2, 17) &\leq 3 \\ \min(1, 3, 2, 17) &\leq 2 \\ \min(1, 3, 2, 17) &\leq 17 \\ a &< b \\ & \& \\ & b \leq c \\ a &< c \end{aligned} \] \[ \min(a, b, c) \leq a, \min(a, b, c) \leq b, \text{and} \min(a, b, c) \leq c. \]

Also, when Player II is playing a \(\delta\), any value less than a “winning” \(\delta\), will also be will also win.

In our case, we will set \(\delta = \min(\sqrt{\epsilon}, 1)\). (Note: A min. of positive numbers is positive)

\[ f(x) = \begin{cases} (x-5)^2 & \text{if } x \notin \mathbb{Z}, \\ 9 & \text{if } x \in \mathbb{Z}. \end{cases} \]

Now, let \(x \in \mathbb{R}\).

Let \(\epsilon > 0\) be arbitrary and let \(\delta = \min(\sqrt{\epsilon}, 1)\). As \(\epsilon > 0\), we have that \(\delta > 0\), as both \(\sqrt{\epsilon} > 0\) and \(1 > 0\). Now, let \(x \in \mathbb{R} \setminus {5}\) be arbitrary, and suppose that \(|x - 5| < \delta\).

As \(\delta = \min(\sqrt{\epsilon}, 1)\), we have that \(\delta \leq 1\), so that \(|x - 5| < \delta \leq 1\) and \(|x - 5| < 1\).

From this, \(-1 < x - 5 < 1\) and \(4 < x < 6\). As \(x \neq 5\) and \(4 < x < 6\), we have that \(x \notin \mathbb{Z}\). Hence, we have that \(f(x) = (x - 5)^2\).

Now, as \(\delta = \min(\sqrt{\epsilon}, 1)\), we also have that \(\delta \leq \sqrt{\epsilon}\), so \(|x - 5| < \delta \leq \sqrt{\epsilon}\) and \(|x - 5| < \sqrt{\epsilon}\).

Now:

\[ 0 \leq |x-5| < \sqrt{\epsilon} \] \[ 0 \leq (x-5)^2 < \epsilon \]

As \((x-5)^2 \geq 0\), \(|(x-5)^2| = (x-5)^2\), so we have:

\[ |(x-5)^2| < \epsilon \] \[ |(x-5)^2 - 0| < \epsilon \]

As we found \(f(x) = (x-5)^2\), we have that \(|f(x) - 0| < \epsilon\). Thus, if \(|x-5| < \delta\), then \(|f(x)-0|<\epsilon\).

As \(x\) was arbitrary, for all \(x \in \mathbb{R} \setminus {5}\), if \(|x-5| < \delta\), then \(|f(x) - 0| < \epsilon\).

As \(\epsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {5}\), if \(|x-5| < \delta\), then \(|f(x) - 0| < \epsilon\).

As \(\epsilon\) was arbitrary, for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {5}\), if \(|x-5| < \delta\), then \(|f(x) - 0| < \epsilon\).

Therefore, \(\lim_{x \to 5} f(x) = 0\).

Example: Consider \(f: \mathbb{R} \to \mathbb{R}\) defined by

\[ f(x) = \begin{cases} 7x^2 + 6 & \text{if } x > 0, \\ 3|x+2| & \text{if } x < 0, \\ 8 & \text{if } x = 0. \end{cases} \]

We will show \(\lim_{x \to 0} (f,0,6)\), i.e., \(\lim_{x \to 0} f(x) = 6\).

There are four different “parts” of the domain of \(f\):

Cases:

  • (i) \(x < -2\)
  • (ii) \(-2 \leq x < 0\)
  • (iii) \(x=0\)
  • (iv) \(x > 0\)

We choose \(x \in \mathbb{R} \setminus {0}\), so this case won’t come up.

If we have \(\delta \leq 2\), we will have \(-2 < x < 2\), so case (i) won’t be relevant.

(This means we will set \(\delta = \min(2, \dots)\))

For case (ii): \(-2 \leq x < 0\). Here: \(f(x) = 3(x+2)\) as \(-2 \leq x < 0\) implies \(x+2 \geq 0\), so \(|x+2| = x+2\). Also, \(0 \leq x+2 < 2\), so

\[ \begin{aligned} |f(x) - 6| &< \epsilon \\ |3(x+2) - 6| &< \epsilon \\ |3x+6-6| &< \epsilon \\ |3x| &< \epsilon \\ 3|x| &< \epsilon \\ |x-0| &< \frac{\epsilon}{3} \longrightarrow \text{we need } \delta \leq \frac{\epsilon}{3}, \text{ so } \delta = \min(2, \frac{\epsilon}{3}, \dots) \end{aligned} \]

For case (iv): Here: \(f(x) = 7x^2 + 6\).

\(|f(x) - 6| < \epsilon\)\ \(|7x^2 + 6 - 6| < \epsilon\)\ \(|7x^2| < \epsilon\)\ \(7|x^2| < \epsilon\)\ \(|x^2| < \frac{\epsilon}{7}\)\ \(|x| < \sqrt{\frac{\epsilon}{7}}\)

We need: \(|x - 0| < \sqrt{\frac{\epsilon}{7}} \implies \delta \leq \sqrt{\frac{\epsilon}{7}}\), so \(\delta = \min(2, \frac{\epsilon}{3}, \sqrt{\frac{\epsilon}{7}})\)

Proof: Let \(f:\mathbb{R}\rightarrow \mathbb{R}\) be the function defined by

\[ f(x)= \begin{cases} 7x^2 + 6 & \text{if } x > 0,\\ 3|x+2| & \text{if } x < 0,\\ 8 & \text{if } x = 0. \end{cases} \]

Let \(\epsilon > 0\) be arbitrary. Define \(\delta = \min(2, \frac{\epsilon}{3}, \sqrt{\frac{\epsilon}{7}})\). As \(\epsilon > 0\), we have \(\frac{\epsilon}{3} > 0\) and \(\sqrt{\frac{\epsilon}{7}}>0\). As \(2>0\) as well, we have \(\delta>0\). Let \(x \in \mathbb{R} \setminus {0}\) be arbitrary, and suppose \(|x - 0| < \delta\). We will consider two cases, either \(x < 0\) or \(x > 0\).

Case 1: Suppose \(x < 0\). As \(x < 0\), we have that \(f(x) = 3|x + 2|\). As \(\delta \leq 2\) and \(|x - 0| < \delta\), we have that \(|x - 0| < 2\) so that \(|x| < 2\) and \(-2 < x < 2\). Hence, \(0 < x + 2 < 4\). As \(x + 2 > 0\), we have that \(|x + 2| = x + 2\), so that \(f(x) = 3(x + 2)\). Also, as \(\delta \leq \frac{\epsilon}{3}\), we have \(|x - 0| < \frac{\epsilon}{3}\).

Now: \(|x-0| < \frac{\epsilon}{3}\)

\[ 3|x|<\epsilon \] \[ |3x|<\epsilon \] \[ |3x+6-6| < \epsilon \] \[ |3(x+2)-6|<\epsilon \]

As \(f(x) = 3(x+2)\), we have \(|f(x)-6|<\epsilon\).

Case 2: Now, suppose \(x>0\). Thus, we have that \(f(x)=7x^2+6\). As \(\delta \leq \sqrt{\frac{\epsilon}{7}}\) and \(|x-0|<\delta\), we have that \(|x-0|<\sqrt{\frac{\epsilon}{7}}\). Now:

\[ |x|<\sqrt{\frac{\epsilon}{7}} \] \[ |x|^2 < \frac{\epsilon}{7} \] \[ 7|x|^2 < \epsilon \] \[ 7x^2 < \epsilon \] \[ |7x^2+6-6|<\epsilon \]

As \(f(x) = 7x^2+6\), we have that \(|f(x)-6|<\epsilon\).

These cases are exhaustive, hence, \(|f(x)-6|<\epsilon\). Thus, if \(|x-0|<\delta\), then \(|f(x)-6|<\epsilon\). As \(x\) was arbitrary, for all \(x \in \mathbb{R} \setminus {0}\), if \(|x-0|<\delta\), then \(|f(x)-6|<\epsilon\).

As \(\delta > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {0}\), if \(|x-0|<\delta\), then \(|f(x)-6|<\epsilon\). As \(\epsilon\) was arbitrary, for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that for all \(x \in \mathbb{R} \setminus {0}\), if \(|x-0|<\delta\), then \(|f(x)-6|<\epsilon\). Therefore, \(\lim_{x \to 0} f(x) = 6\).

\(\square\)

\[ \begin{aligned} \text{Case (ii) } & -2 \leq x < 0 \\ \text{Here } f(x) &= 3|x+2| \\ & -2 \leq x < 0 \\ & 0 \leq x+2 < 2 \\ & x+2 > 0\\ \text{So } |x+2| &= (x+2) \\ \implies f(x) &= 3(x+2) \\ |f(x) - 6| &< \epsilon \\ |3(x+2)-6| &< \epsilon \\ |3x+6-6| &< \epsilon \\ |3x| &< \epsilon \\ 3|x| &< \epsilon \\ |x| &< \frac{\epsilon}{3} \\ |x-0| &< \frac{\epsilon}{3} \end{aligned} \] \[ \begin{aligned} &\text{Let } f: \mathbb{R} \to \mathbb{R} \text{ be defined by } x \mapsto \begin{cases} x^2, & \text{ if } x \in \mathbb{Q} \\ 0, & \text{ if } x \in \mathbb{P} \end{cases} \\ \\ &f(\sqrt{2}) = 0 \\ &f(0) = 0 \\ &f(4) = 16 \\ &f(\pi) = 0 f(\sqrt{9}) = 9 \\ \\ &\lim_{x \to 0} f(x) = 0. \end{aligned} \] \[ \begin{aligned} & \text{Any \\)\delta\\( works! } \mid \delta = N\epsilon \\ & \begin{array}{c} 3>\epsilon \\ 3>|0| \\ 3>|0-0| \\ 3>|0-f(x)| \\ \text{Case } x \in P \end{array} \begin{array}{c} \delta = \text{min}(\delta_\epsilon, ---\frac{1}{3}) \\ 3 \mu>|x| \\ 3>|2x| \\ 3>|0-x| \\ 3>|0-f(x)| \\ \text{Case } x \in Q \end{array} \\ & (3>|0-f(x)| \Rightarrow \delta > |x-0| ) ( \forall x \in R \backslash \{0 \} ) (0 < \delta \Rightarrow \exists \epsilon ) (0 < \epsilon < 3\Lambda) \end{aligned} \]

Here is the text from the image.

The image seems to represent a function with vertical asymptotes. The vertical lines likely represent the asymptotes and the curved lines shows the function going towards negative infinity when x goes towards 0.

\begin{tikzpicture} \draw[->, red] (-2,0) – (2,0); % x-axis \draw[very thin, blue] (-1,-2) – (-1,2); % First asymptote \draw[very thin, blue] (0,-2) – (0,2); % Second asymptote \draw[very thin, blue] (1,-2) – (1,2); % Third asymptote

\node[below] at (-1,0) {\)1/3\(}; % Position for 1/3 \node[below] at (1,0) {\)1/2\(}; % Position for 1/2 \fill[red] (0,0) circle (2pt); % red dot on the middle

\draw[->, red] (0,0) to[out=270,in=90] (0,-2); \end{tikzpicture}

\lim_{x\to a} f(x) = L \text{iff} (\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in \text{Dom}(f) \setminus {a}) (|x - a| < \delta \implies |f(x) - L| < \epsilon)

f(5) = 25, f(-2) = 4, f(1) = 1

f(0) = 0, f(\frac{1}{2}) \text{ DNE}

{2, 3} = (1.5, 2.5) \cup \mathbb{Z}

\[ \begin{aligned} m &= 0: \{0 + \tfrac{1}{1}, 0 + \tfrac{1}{2}, 0 + \tfrac{1}{3}, 0 + \tfrac{1}{4}, \dots \}\\ &1, 1 + \tfrac{1}{2}, 1 + \tfrac{1}{3}, 1 + \tfrac{1}{4}, 1 + \tfrac{1}{5}, 1 + \tfrac{1}{6} , ...\\ m &= 1: 2, 1\tfrac{1}{2}, 1\tfrac{1}{3}, 1\tfrac{1}{4}, 1\tfrac{1}{5}, ...\\ m &= 2: 3, 2\tfrac{1}{2}, 2\tfrac{1}{3}, 2\tfrac{1}{4}, 2\tfrac{1}{5}, ...\\ m &= -1: 0, -1 + \tfrac{1}{2}, -1 + \tfrac{1}{3}, -1 + \tfrac{1}{4} , ...\\ & -\tfrac{1}{2}, -\tfrac{2}{3}, -\tfrac{3}{4}, ... \end{aligned} \]

\(\varphi \text{lim}(f, a, L)\) iff \((\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \text{Dom}(f)\setminus{a})(|x-a|<\delta \implies |f(x) - L| < \epsilon)\)

Let’s examine the function \(f: \mathbb{Z} \rightarrow \mathbb{Z}\) defined by \(f(x) = x^2\) for all \(x \in \mathbb{Z}\).

We’ll take a look at the formula \(\varphi \text{lim}(f, 2, 4)\):

\((\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \mathbb{Z}\setminus{2})(|x-2| < \delta \implies |f(x)-4| < \epsilon)\)

In the “Game”, if Player II plays any \(\delta \leq 1\), \(|x-2| < \delta\) will just be false:

\[ \begin{aligned} |x-2| &< 1 \\ -1 < x-2 &< 1\\ 1 < x &< 3 \end{aligned} \]

As \(x \in \mathbb{Z}\setminus{2}\), there are no values of \(x\) which satisfy \(1 < x < 3\).

This makes the implication (trivially) true, so \(\varphi \text{lim}(f, 2, 4)\) is true.

For the same reasoning/logic, \(\varphi \text{lim}(f, 2, 17)\) will also be true.

Using our limit notation, we would write both

\[ \begin{aligned} \lim_{x\to 2} f(x) &= 4 \text{and} \lim_{x\to 2} f(x) = 17 \end{aligned} \]

We don’t want this sort of issue to come up, we want the limit to be well defined & unique.

The issue/problem in this example was that the punctured open interval \((2-\delta, 2+\delta) \setminus {2}\) was disjoint from the domain of the function, i.e.,:

\[ \text{Dom}(f) \cap (2-\delta, 2+\delta) \setminus \{2\} = \emptyset \text{(for } \delta \leq 1) \] \[ \mathbb{Z} \cap (2-\delta, 2+\delta) \setminus \{2\} = \emptyset \text{(for } \delta \leq 1) \]

In other words, the issue is that we could find an open interval that isolates 2 from the domain of \(f\).

Let’s consider a similar, but different function:

\[ f : D \to \mathbb{R}, \text{ defined by } x \mapsto x^2 \text{ for all } x \in D \]

Where

\[ D = \mathbb{Z} \cup \left\{ m + \frac{1}{n} \middle| m \in \mathbb{Z}, n \in \mathbb{N} \right\} \] \[ = \left\{ \dots, -3, -2\frac{1}{2}, -2\frac{1}{3}, -2\frac{1}{4}, \dots, -2, -1\frac{1}{2}, -1\frac{1}{3}, -1\frac{1}{4}, \dots \right\} \]

% “Picture” of D: (This part is best represented with an image, as it’s a number line) %fix this

\[ \begin{aligned} &D: \\ & 1.5 \\ & \frac{1}{2} \ \frac{1}{3} \ \frac{1}{4} \ \frac{1}{5} \ \frac{1}{6} \ \frac{1}{7} \ ... \\ & ( .9, 1.1) \cap D = \{\frac{11}{12}, \frac{12}{13}, \frac{13}{14}, ... \} \\ & ( .9, 1.01) \cap D = \{ 1, \frac{1}{101}, \frac{1}{102}, \frac{1}{103}, ... \} \\ & (1.4, 1.6) \cap D = \{ 1.5 \} \\ & ( .9, 2.9) \cap D = D \end{aligned} \] \[ \begin{aligned} D &= (0,1] \cup \{2\}\\ -17&: (-18,-16) \cap D = \emptyset \implies \text{not inf. so -17 is not} \\ & \text{an acc. pt.} \\ 0&: (-1,1) \cap D = (0,1) \implies \text{inf. many \#}'s\\ &(-0.1, 0.1) \cap D = (0, 0.1)\\ &(-0.01, 0.01) \cap D \text{"} \\ & \vdots\\ & \text{0 is an acc. pt. of D} \\ &\text{\& cond. pt.}\\ 6.5&: (6.4, 6.6) \cap D \text{is an acc. pt. of D}\\ 1&: (-1,2) \cap D = (0,1] \\ & (0.001, 1.11) \cap D = (0.001, 1] \\ & (0.9999, 1.00001) \cap D = (0.9999, 1] \\ & \frac{1}{1} \text{ is an acc. pt.} \end{aligned} \]

1.5: \((0.5, 1.6) \cap D = (0.5, 1] \in inf.\) \((1, 2) \cap D = \emptyset \leftarrow not , inf\) 1.5 is not an acc. pt of D. 2: \((1.9, 2.1) \cap D = {2} , not , acc. , pt , of , D\) 3: \((2.9, 3.1) \cap D = \emptyset , not , acc. , pt. , of , D\).

  • D
  • 0, \(\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\)
  • (0.249, 0.251) \(\cap\) D = \({\frac{1}{4}}\) Not acc.pt

F: \(\mathbb{N} \to B\)

\(1 \mapsto 0\)

\(2 \mapsto \frac{1}{3}\)

\(3 \mapsto \frac{1}{4}\)

\(4 \mapsto \frac{1}{5}\)

\(5 \mapsto \frac{1}{6}\)

\(n \mapsto \frac{1}{n+1}\)

\(B\)

inf. so 0 is acc. pt.

Countable / not uncountable.

0 is not a condensation pt. of D.

For this function \(\varphi_{\lim}(f, 2, L)\) will be true if \(L=4\), but will be false for any \(L \neq 4\):

For \(L=4\), whatever Player I chooses for \(\epsilon > 0\), Player II can “win” by playing \(\delta = \min(2, \frac{\epsilon}{6})\).

For \(L \neq 4\), Player I can find a value of \(\epsilon > 0\) small enough that Player II cannot play to win.

\(\leftarrow\) As we make this \(\epsilon\)-window smaller, we will always have infinitely many points in this window close to 2, and any/every \(\delta\)-window will have infinitely many points in the domain.

We can’t isolate 2.

Definition (Accumulation Point) Let \(D \subseteq \mathbb{R}\). We say that \(a \in \mathbb{R}\) is an accumulation point of \(D\) iff

\[ (\forall c \in \mathbb{R}) (\forall d \in \mathbb{R}) (c < a < d \Rightarrow (c, d) \cap D \text{ is infinite}). \]

Equivalent to:

\[ |( (c, d) \cap D ) \setminus \{a\} | \text{ is infinite} \]

or

\[ |( (c, d) \cap D ) \setminus \{a\} | \geq \aleph_0 \]

Definition (Condensation Point) Let \(D \subseteq \mathbb{R}\). We say that \(a \in \mathbb{R}\) is a condensation point of \(D\) iff

\[ (\forall c \in \mathbb{R}) (\forall d \in \mathbb{R}) (c < a < d \Rightarrow (c, d) \cap D \text{ is uncountable}). \]

Equivalent to:

\[ |( (c, d) \cap D ) \setminus \{a\} | \text{ is uncountable} \]

or

\[ |( (c, d) \cap D ) \setminus \{a\} | > \aleph_0 \] \[ \begin{aligned} \text{2) }&D = (0, \frac{1}{2}) \cup (\frac{1}{3}, \frac{1}{4}) \cup (2, 2\frac{1}{4}) \cup (3, 3\frac{1}{5}) \cup (4, 4\frac{1}{6}) \cup \dots \\ &\cup \left\{ -\frac{1}{3} + \frac{m}{n+1} : m \in \mathbb{N}, n \in \mathbb{N} \right\}\\ &\to \text{Acc. } \mathbb{Z}^+ \cup \{1\}\\ &\to \text{Cond } \omega \\ \text{1) }&(0, 1)\\ &\text{Cond/Acc. } \to [0, 1] \end{aligned} \] \[ (2.19999, 2.20001) \cap \mathbb{Z} = \{2 \frac{1}{5}\} \]

\usepackage[margin=1in]{geometry}

With these “new” terms, let’s examine the sets:

\(\mathbb{Z}\) and \(D = \mathbb{Z} \cup {m+\frac{1}{n} | m \in \mathbb{Z}, n \in \mathbb{N}}\) (Both \(\mathbb{Z} \subseteq \mathbb{R}\) and \(D \subseteq \mathbb{R}\))

In \(\mathbb{Z}\):

  • 0
  • 1
  • 2
  • 3
  • 4
  • 1.5
  • 2.5

Notice 1.5 & 2.5 are both real, \(1.5 < 2 < 2.5\), but \((1.5, 2.5) \cap \mathbb{Z} = {2}\) which is not infinite.

This tells us that 2 is not an accumulation point (nor a condensation point) of \(\mathbb{Z}\).

For similar reasons, no value will be an accumulation (condensation) point of \(\mathbb{Z}\).

In \(D\): %Diagram:

  • 1
  • c
  • 2
  • d
  • 3

Here, no matter what values of \(c\) & \(d\) are chosen with \(c < 2 < d\), there will be infinitely many points in \((c,d) \cap D\) (specifically the points will be to the right of 2).

This tells us that 2 is an accumulation point of \(D\).

Similarly, every integer will be an accumulation point of \(D\).

(Still Examining D)

If we were to choose \(c = 1.9\) and \(d = 2.3\) (\(1.9 < 2 < 2.3\)), we can define \(f:\mathbb{N} \xrightarrow[]{onto}_{1-1} ((1.9, 2.3) \cap D) \setminus {2}\) as follows:

\[ \begin{aligned} 1 &\rightarrow 2\frac{1}{4} \\ 2 &\rightarrow 2\frac{1}{5} \\ 3 &\rightarrow 2\frac{1}{6} \\ 4 &\rightarrow 2\frac{1}{7} \\ \vdots& \\ n &\rightarrow 2\frac{1}{n+3} \end{aligned} \]

As this function is a bijection, \(((1.9, 2.3) \cap D) \setminus {2}\) is denumerable / countable.

This tells us that 2 is not a condensation point of D. (In fact, every integer in D is not a condensation point).

Also notice that any non-integer value in D will not be an accumulation point.

\[ \begin{aligned} & [e, \pi] \\ & e \curvearrowright (\cdots 2.8 \rightarrow 3 \rightarrow 3.1 \rightarrow \pi) \\ & \text{Accumulation Pts:} [e, \pi] \\ & \text{(also condensation Pts).} \end{aligned} \]

(Adjusted/Fixed) Definition:

Let \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\). Also, let \(f: D \to E\) and suppose \(a \in \mathbb{R}\) is an accumulation point of \(D\). Then:

\(\mathop{\mathcal{Y}\text{lim}} (f, a, L) \text{ iff } (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in \text{dom}(f) \setminus {a})( |x-a| < \delta \Rightarrow |f(x) - L| < \epsilon)\)

With this additional requirement that \(a\) be an accumulation point of the domain, we avoid the issue of the antecedent being always false.

Theorem: Let \(D \subseteq \mathbb{R}\), \(E \subseteq \mathbb{R}\), \(f: D \to E\), and let \(a \in \mathbb{R}\) be an accumulation point of \(D\). Also, let \(L \in \mathbb{R}\) and \(\hat{L} \in \mathbb{R}\).

If \(\mathop{\mathcal{Y}\text{lim}} (f, a, L)\) and \(\mathop{\mathcal{Y}\text{lim}} (f, a, \hat{L})\), then \(L = \hat{L}\).

We will prove this theorem. This theorem tells us that the limit is unique (if it exists).

Let \(D \subseteq \mathbb{R}\). A value \(a \in \mathbb{R}\) is an accumulation point of \(D\)

iff \((\forall \beta > 0) (((\alpha-\beta, \alpha+\beta) \cap D) \setminus {a} \text{ is infinite})\)

Infinitely many points from \(D\) in this interval (no matter how small \(\beta > 0\) is)

Eg. Consider \(D = \mathbb{Q}\), \(a = \pi\)

\[ \begin{aligned} & \text{(Adjusted/Fixed) Definition:} \\ & \text{Let } D \subseteq \mathbb{R} \text{ and } E \subseteq \mathbb{R} \text{. Also, let } f: D \rightarrow E \text{ and suppose } a \in \mathbb{R} \\ & \text{is an accumulation point of } D \text{. Then:} \\ & \varphi_{\lim}(f, a, L) \text{ iff } (\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in dom(f) \setminus \{a\})(0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon) \\ & \text{With this additional requirement that } a \text{ be an accumulation point of the} \\ & \text{domain, we avoid the issue of the antecedent being always false.} \\ & \text{Theorem: Let } D \subseteq \mathbb{R}, E \subseteq \mathbb{R}, f: D \rightarrow E, \text{ and let } a \in \mathbb{R} \text{ be an accumulation} \\ & \text{point of } D \text{. Also, let } L \in \mathbb{R} \text{ and } \hat{L} \in \mathbb{R} \text{.} \\ & \text{If } \varphi_{\lim}(f, a, L) \text{ and } \varphi_{\lim}(f, a, \hat{L}), \text{ then } L = \hat{L} \text{.} \\ & \text{We will prove this theorem. This theorem tells us that the limit is} \\ & \text{unique (if it exists).} \end{aligned} \] \[ \begin{aligned} a &\neq b \\ 0 &< |a-b| \end{aligned} \] \[ |2-7| = 5 \] \[ \begin{aligned} &\lim_{(f, a, L)} \\ &(\forall \epsilon > 0)(\exists \delta_1 > 0) (\forall x \in D \setminus \{a\}) (|x-a| < \delta_1 \implies |f(x) - L| < \epsilon) \\ &\epsilon = 15: \text{ There is a } \delta_1(15) > 0 \text{ s/t } \\ &(\forall x \in D \setminus \{a\}) (|x - a| < \delta_1(15) \implies |f(x) - L| < 15) \\ &\epsilon = 0.02: \text{ There is a } \delta_1(0.02) > 0 \text{ s/t } \\ &(\forall x \in D \setminus \{a\}) (|x - a| < \delta_1(0.02) \implies |f(x) - L| < 0.02) \\ &\epsilon = 0.0000001 \\ &12 - 714 = 3 \end{aligned} \]

For \(\epsilon > 0\), \(\exists \delta > 0\)

There is a corresponding \(\delta > 0\) s/t

\((\forall x \in D \setminus {a})(\left|x-a\right|<\delta \Rightarrow \left|f(x) - L\right| < \epsilon)\)

\(Y_{\lim} (f,a, L)\)

Logical Form of the Theorem

\[ (\forall \delta \subseteq \mathbb{R}) (\forall E \subseteq \mathbb{R}) (\forall f \in E^D) (N_a \in Acc(D)) (\forall L \in \mathbb{R}) (\forall L' \in \mathbb{R}) \left[ \left( \varphi_{\lim} (f_a, L) \land \varphi_{\lim} (f_a, L') \right) \Rightarrow L = L' \right] \]

Shorthand for:

\[ (\forall D \in \mathcal{P}(\mathbb{R})) (\forall E \in \mathcal{P}(\mathbb{R})) \]

Acc(D) is the set of all accumulation points of D.

E is the set of all functions with domain D & codomain E.

Recall the equivalences: \(\neg (A \Rightarrow B)\) and \((A \land \neg B)\) and: \(C\) and \((\neg C \Rightarrow (D \land \neg D))\)

We will do this proof by contradiction, so we assume:

i.e.:

\[ \neg \left[ \left( \varphi_{\lim} (f_a, L) \land \varphi_{\lim} (f_a, L') \right) \Rightarrow L = L' \right] \] \[ \left[ \left( \varphi_{\lim} (f_a, L) \land \varphi_{\lim} (f_a, L') \right) \land L \neq L' \right] \]

And then, we will produce a contradiction: “(\(\Psi \land \neg \Psi\))”

“Idea” of the Proof:

For a given \(\epsilon\), there will be \(\delta\) & \(\hat{\delta}\) windows that keep the function inside the windows around \(\hat{L}\) & \(L\).

If the windows around \(\hat{L}\) & \(L\) are disjoint, and there are values in the domain in this \(\delta, \hat{\delta}\) windows we’ll have a contradiction (each corresponding point would need to be in both windows).

In our proof, we will be assuming the following (for a contradiction):

i) \(\lim_{x \to a} f(x) = L: (\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in dom(f) \setminus {a} ) (|x - a| < \delta \Rightarrow |f(x) - L| < \epsilon)\)

ii) \(\lim_{x \to a} f(x) = \hat{L}: (\forall \epsilon > 0) (\exists \delta > 0) (\forall x \in dom(f) \setminus {a} ) (|x - a| < \delta \Rightarrow |f(x) - \hat{L}| < \epsilon)\)

iii) \(L \ne \hat{L}\)

We have these “facts” to work with (we’re assuming these); we don’t need to show them.

For (i) & (ii), this means that we can choose any \(\epsilon > 0\), and we can state that there is a corresponding \(\delta\) (for each \(L\) & \(\hat{L}\)).

In the proof we will use an \(\epsilon > 0\) that is small enough to make sure that the \(\epsilon\)-windows don’t overlap.

Proof: Let \(D \subseteq \mathbb{R}\) and \(E \subseteq \mathbb{R}\) be arbitrary sets and let \(f:D\rightarrow E\) be an arbitrary function. Also, let \(a\) be an arbitrary accumulation point of \(D\). Finally, let \(L\) and \(\hat{L}\) be arbitrary real numbers.

We will show that if \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} f(x) = \hat{L}\), then \(L = \hat{L}\).

Towards a contradiction, suppose \(\lim_{x \to a} f(x) = L\), \(\lim_{x \to a} f(x) = \hat{L}\), and that \(L \neq \hat{L}\).

As \(L \neq \hat{L}\), we have that \(|L - \hat{L}| > 0\).

Define \(\hat{\varepsilon}\) to be \(\frac{1}{4} |L - \hat{L}|\), i.e., \(\hat{\varepsilon} = \frac{1}{4}|L - \hat{L}|\). Note that as \(|L - \hat{L}| > 0\), we have that \(\hat{\varepsilon} = \frac{1}{4}|L - \hat{L}| > 0\).

Since \(\lim_{x \to a} f(x) = L\) and \(\lim_{x \to a} f(x) = \hat{L}\), we have that:

\((\forall \varepsilon > 0)(\exists \delta_1 > 0)(\forall x \in D \setminus {a})(|x - a| < \delta_1 \Rightarrow |f(x) - L| < \varepsilon)\), and

\((\forall \hat{\varepsilon} > 0)(\exists \delta_2 > 0)(\forall x \in D \setminus {a})(|x - a| < \delta_2 \Rightarrow |f(x) - \hat{L}| < \hat{\varepsilon})\).

In particular, as \(\hat{\varepsilon} > 0\), there exist \(\delta_1 > 0\) and \(\delta_2 > 0\) such that:

\((\forall x \in D \setminus {a})(|x - a| < \delta_1 \Rightarrow |f(x) - L| < \hat{\varepsilon})\), and (1)
\((\forall x \in D \setminus {a})(|x - a| < \delta_2 \Rightarrow |f(x) - \hat{L}| < \hat{\varepsilon})\). (2)

Let \(\delta = \min(\delta_1, \delta_2)\). Then, as \(\delta_1 > 0\) and \(\delta_2 > 0\), we have that \(\delta > 0\).

Since \(\delta > 0\) and since \(a\) is an accumulation point of \(D\), we have that \(((a - \delta, a + \delta) \cap D) \setminus {a}\) is infinite, so that there is some \(\hat{x} \in ((a - \delta, a + \delta) \cap D) \setminus {a}\). As \(\delta = \min(\delta_L, \delta_{\hat{L}})\), we have \(\delta \le \delta_L\) and \(\delta \le \delta_{\hat{L}}\) so that:

\[ \begin{aligned} (a - \delta, a + \delta) \subseteq (a - \delta_L, a + \delta_L), \text{ and } \\ (a - \delta, a + \delta) \subseteq (a - \delta_{\hat{L}}, a + \delta_{\hat{L}}). \end{aligned} \]

From this, and as \(\hat{x} \in ((a - \delta, a + \delta) \cap D) \setminus {a}\), we have that:

\[ \begin{aligned} \hat{x} \in ((a - \delta_L, a + \delta_L) \cap D) \setminus \{a\} \text{, and } \\ \hat{x} \in ((a - \delta_{\hat{L}}, a + \delta_{\hat{L}}) \cap D) \setminus \{a\}. \end{aligned} \]

Hence, we have that \(\hat{x} \in D \setminus {a}\) and that \(|\hat{x} - a| < \delta_L\) and \(|\hat{x} - a| < \delta_{\hat{L}}\).

By (1) and (2), we have that \(|f(\hat{x}) - L| < \hat{\varepsilon}\) and \(|f(\hat{x}) - \hat{L}| < \hat{\varepsilon}\). (3)

Now:

\[ \begin{aligned} |L - \hat{L}| &= |L - f(\hat{x}) + f(\hat{x}) - \hat{L}| \\ &\le |L - f(\hat{x})| + |f(\hat{x}) - \hat{L}| \text{(By the Triangle Inequality)} \\ &= |f(\hat{x}) - L| + |f(\hat{x}) - \hat{L}| \\ &< \hat{\varepsilon} + \hat{\varepsilon} \\ &= 2 \hat{\varepsilon} = 2(\frac{1}{4}|L - \hat{L}|) = \frac{|L - \hat{L}|}{2}. \text{(By (3))} \text{(As } \hat{\varepsilon} = \frac{1}{4}|L - \hat{L}| \text{)} \end{aligned} \]

Now, \(|L - \hat{L}| < \frac{1}{2}|L - \hat{L}|\), so that \(\frac{1}{2}|L - \hat{L}| < 0\), and \(|L - \hat{L}| < 0\). As \(|L - \hat{L}| > 0\), we have a contradiction.

Hence, if \(\varphi_{\text{lim}}(f, a, L)\) and \(\varphi_{\text{lim}}(f, a, L’)\), then \(L=L’\).

As \(D, E, f: D \to E, a, L\) and \(L’\) were arbitrary, for all \(D \subseteq \mathbb{R}\), \(E \subseteq \mathbb{R}\), \(f: D \to E\), and for all accumulation points \(a\) of \(D\) and any real numbers \(L\) and \(L’\), if \(\varphi_{\text{lim}}(f, a, L)\) and \(\varphi_{\text{lim}}(f, a, L’)\), then \(L=L’\).

\[ \begin{aligned} |L - \hat{L}| &< \frac{1}{2}|L - \hat{L}| \\ A &< \frac{1}{2}A \\ A - \frac{1}{2}A &< 0 \\ (1-\frac{1}{2})A &< 0 \\ \frac{1}{2}A &< 0 \end{aligned} \] \[ \begin{aligned} |L-L| &\geq 0 \\ \\ |L - L| &= |(L - f(x)) + (f(x) - L)| \\ &\leq |L-f(x)| + |f(x) - L| \\ &= |f(x) - L| + |f(x) - L| \\ &< \epsilon + \epsilon \\ &= 2\epsilon\\ &= 2(\frac{\epsilon}{4}) \end{aligned} \]
\[ \begin{aligned} |A + B| &\leq |A| + |B| \\ |2 + 7| &= |2| + |7| \\ |(-2) + (-7)| &= |-2| + |-7| \\ |2 + (-7)| &< |2| + |-7| \\ |(-2) + 7| &< |-2| + |7| \end{aligned} \]
\[ ( \exists \delta > 0) \ (\forall x \in \text{Dom}(f \setminus \{a\}) ) \ ( |x - a| < \delta \implies |f(x) - L| < \epsilon ) \] \[ \delta = \min(1, \frac{5}{3}) \] \[ |2 - x| < \delta : \ 8 > |2-x| \] \[ 1 > |2-x| \] \[ 1 > 2 - x > -1 \] \[ \frac{5}{3} > |2 - x| \implies 8 > \frac{5}{3} \] \[ 3 < x+2 < 5 \] \[ \begin{array}{c} x+2<5 \\ \swarrow \searrow \\ |x+2| = x+2 \end{array} \] \[ |x+2| < 5 \] \[ |x+2| < \frac{5}{3} \] \[ 3 \cdot \frac{5}{3} > |2 + x| \implies 5 > |2 + x| \] \[ 3 > |2 + x| \cdot \frac{1}{3} \] \[ 3 > |2 - x| \] \[ 3 > |(2 - x)(2+x)| \] \[ 3 > |4 - f(x)| \] \[ \begin{aligned} & |x+2| < 4 \\ & \text{Prob.} \\ & \downarrow \\ & \delta = \min \left( 2 , \frac{2}{3} \right) \\ & |x-2| < 2 \\ & -2 < x-2 < 2 \\ & 2 < x+2 < 6 \\ & \delta = \min \left( \frac{1}{2} , \frac{6}{2} \right) \\ & |x-2| < \frac{1}{2} \\ & -\frac{1}{2} < x-2 < \frac{1}{2} \\ & \frac{3}{2} < x+2 < \frac{9}{2} \end{aligned} \] \[ f(x) = x^2, \quad g(x) = x^3 \]

By the Triangle Inequality: \(| A + B | \leq |A| + |B|\)

So: \[ | (f(x) - 4) + (g(x) - 8) | \leq |f(x) - 4| + |g(x) - 8| \]